Author Archives: Gino Brignoli

About Gino Brignoli

PhD student with the London NERC DTP. Previously ant genomics and evolution Research Assistant at Queen Mary University of London. With a keen interest in entomology, I have volunteered with the Lepidoptera department and Soil Biodiversity Group at the Natural History Museum, and on the Thorn to Orchid and Water for Wildlife projects with London Wildlife Trust.

Buzzkill: Arabica coffee plantations under increasing threat from the effects of climate change

Note that this content is from an article I wrote as part of my BSc degree in 2014. The latest reports indicate that coffee production and consumption have both increased since the slump of 2013 – 2016, while prices have shown a downward trend. Despite this, I think that the article remains relevant especially concerning coffee production and means of mitigating the inevitable effects of climate change.

Originating in the horn of Africa with cultivation possibly starting in Yemen around six
centuries ago, coffee is now one of the most popular hot drinks worldwide1. After oil, coffee is the world’s second-most traded commodity with 93.4 million bags, worth a staggering US $15.4 billion (£9.27 billion) exported from coffee-growing countries in 2009/2010. Now it seems that the world’s coffee-producing regions may be under threat from the effects of climate change, according to Aaron Davis and Justin Moat from Kew.

Screenshot 2018-09-29 at 11.44.31.png

By all accounts, we love our coffee, with nearly a third of the world’s population drinking it. The USA imported almost 27 million bags between November 2012 and October 2013 while the UK imported around 4 million bags over the same period, according to the International Coffee Organization (ICO). In total, worldwide imports for the 2012/2013 coffee season were an astonishing 133.9 million bags.

Reduction in productivity, increased and intensified management, and crop failure.

Of the 125 species of coffee plants found naturally, the two main types used in the production of coffee are arabica and robusta. Originally from the high-altitude, humid evergreen forests of Ethiopia and South Sudan, arabica is known to be climate sensitive with an ideal average temperature of between 18°C and 23°C and well-defined rainy and dry seasons. Arabica coffee is now grown in 52 countries worldwide. Robusta, as its name implies, is more comfortable with higher temperatures and produces a greater crop yield than arabica. With its higher caffeine content and more bitter flavour, robusta tends to be used in instant coffees while arabica is considered superior in quality and taste making up 70% of all commercially produced coffee. There are now thought to be around 26 million people working in the coffee sector worldwide. Our demand for coffee has never been greater and yet a series of climate-linked and interrelated problems such as increased temperature, unpredictable rainfall, the spread of insect pests and diseases, intensive farming, and urbanization could spell the end of coffee as we know it.

It’s getting hotter

Ethiopia (the fifth largest global exporter of coffee and Africa’s main coffee-producing nation) was used as an example by Davis and Moat when they looked at the possible future distribution of arabica coffee. They based their findings on the Intergovernmental Panel on Climate Change’s (IPCC’s) best estimates of anticipated temperature rises of 1.8°C to 4°C in global temperatures by the end of the twenty-first century and found that coffee production was likely to decrease significantly. Worryingly, they also found that there would be less land that is suitable for growing coffee, saying that it would lead “…to a reduction in productivity, increased and intensified management…and crop failure.”

Countries whose economies depend heavily on agriculture for their development may be hardest hit by a change in climate.

Responding to warming temperatures, some farmers are starting to grow their crops further up hillsides and mountain slopes. At higher elevations, where the temperature is slightly cooler, the arabica plants thrive once again. It is, however, harder to farm at higher altitudes and we cannot keep going up the mountains, we’ll simply run out of farmable land. There is also expected to be a climatic shift in latitudes so that the tropics and subtropics effectively move away from the equator, but this is incredibly difficult to predict because of air currents, ocean currents and local geography all affect this and act on one another. In a report by the International Trade Centre (ITC) entitled ‘Climate Change and the Coffee Industry’ the authors note that any shift in altitude or latitude may adversely affect the quality of the coffee and fewer parts of the world may end up being able to support arabica coffee production.

Unpredictable rainfall

As air and ocean temperatures rise, it is likely that wet areas will get wetter and dry areas will get drier according to both the ITC and IPCC. This is the rule-of-thumb measure for regions, but there is also expected to be far more variability; that is, more extreme droughts and more heavy rainfall. The increased warming will mean that for every 1°C increase in temperature the plants and animals that live in a certain area because the climate conditions are perfect for them there will have to shift by 160 km (about the distance between Birmingham and London as the crow flies) north or south, following those perfect conditions. In the case of some island nations a 160 km shift could be catastrophic. We should expect more humidity and higher rainfall to accompany the hotter tem- peratures. The seasonal and geographical rainfall and temperature patterns that we have all grown used to will change because of these shifts. This is of course incredibly bad news for arabica which needs quite particular weather conditions.

Screenshot 2018-09-29 at 11.42.21

Intensive farming methods

The way in which the coffee is grown can also contribute to some difficulties. Traditionally, coffee was grown under taller trees and shrubs of different heights with a large mix of plant species. This meant that the coffee plants grew in shade and that the soil was rich with the nutrients of all of the accumulated dead plant matter. On a number of farms this method of growing has been abandoned in favour of plantation-style planting which means that the farmer can squeeze more plants into an area and improve the size of the yield. This involves clearing the land by chopping down the trees, sometimes burning, and planting sun-resistant varieties of coffee that have been bred to tolerate growing in direct sunshine. This intense planting regime also requires the addition of many tonnes of expensive man-made fertilizers and chemical controls such as fungicides and pesticides every year. These changes in production practices have been found to exacerbate the problems associated with coffee-growing according to Juliana Jaramillo, from the Institute of Plant Diseases and Plant Protection, at the University of Hannover in Germany. Studying a coffee-producing area near Nairobi in Kenya, Jaramillo and her colleagues found that open plantations were 2°C higher than shaded ones. Obviously, the associated warmer temperatures are a problem for arabica growing, but it can also present coffee-growers with a whole new set of problems. The increased exposure to heavy rain can lead to nutrients being leached out of the soil, soil conditions quickly deteriorate leading to soil erosion, and in the worst cases, water run-off that turns into floods and landslides. This becomes a cyclical problem, as crops fail or yields decrease, more intensification occurs to make up the shortfall and worsens the conditions.

Screenshot 2018-09-29 at 11.45.29.png

The spread of insect pests & diseases

As with any crop plant, coffee can suffer from attacks by insect pests and diseases. With even small temperature rises and changes in rainfall patterns, these pests and diseases become more common and more difficult to control. The coffee berry borer beetle is the most destructive pest of commercially grown coffee, causing crop losses of more than US $500 million (£300 million) per year. These beetles actually benefit from increases in temperature. Based on a 1°C temperature rise over the next 50 years, Jaramillo expects to find the beetles reproducing faster and spreading further. Even now the insects are being found 300 metres higher up the slopes of Mt. Kilimanjaro in Tanzania than where they used to be ten years ago.

A devastating outbreak of coffee leaf rust in Central America was reported by Reuters News Agency in July 2013. The rust is very damaging to crop yields and was responsible for a 15% drop in production from the region last season with even worse effects expected for 2013/2014. Warm temperatures and high humidity are ideal conditions for the rust to spread, but it also needs the leaf that it is colonising to be wet to be able to first become established. Increased warming and heavier than usual rainfall in the region has created the perfect incubator for the rust. Ironically, another fungus, the white halo fungus, which attacks and partially controls the spread of the rust
has been wiped out by the systematic spraying of chemicals. “What we feel has been happening is that gradually the integrity of this once-complicated ecosystem has been slowly breaking down, which is what happens when you try to grow coffee like corn,” said US ecologist John Vandermeer.

The integrity of this once- complicated ecosystem has been slowly breaking down.

Rather than responding to temperature rises, the coffee white stem borer beetle, a major coffee pest in Zimbabwe, is becoming more common because of changes in rainfall. Adult beetles emerge from the infested coffee plants in the rainy season and with increased periods of rainfall up to 200% more beetles are expected there by the year 2080 says Dumisani Kutywayo and colleagues from the Coffee Research Institute (CRI). A quarter of Zimbabwe’s yield losses are due to infestation by coffee white stem borer and as rainfall patterns become more unpredictable and seasonality shifts, coffee farmers’ outlook can only be described as gloomy.

Screenshot 2018-09-29 at 11.46.26

What is to be done?

In the face of catastrophe, all is not lost. The planting of coffee plants under a mixed canopy of plants has shown time and again to be a very effective model for controlling temperature. This form of planting is known as agroforestry and apart from creating more favourable conditions for coffee growing also allows the farmer to grow an additional crop such as bananas. This model is already in use across the coffee-growing world and as Helton Nonato de Souza from the Department of Soil Quality, Wagenin- gen University in The Netherlands explains: agroforestry creates shade, maintains a cooler air temperature, improves the condition of the soil, retains soil moisture, and limits damage from high rainfall. In their study area in the Brazilian Atlantic Rainforest, de Souza and his team also identified not only a vast array of tree species average of 60% greater biodiversity than the surrounding forests.

This species richness is an invaluable part of a healthy ecosystem and contributes to the well being of the coffee plants through biological controls. Pests and diseases can be controlled by their natural predators instead of chemicals as long as we provide a space for them to live according to the US ecologist, Daniel Karp.

There is also ongoing research into developing new breeds of arabicas that are less heat-sensitive or show more resistance to pathogens and diseases. Returning to the birthplace of coffee; some coffee plants with resistance to extremes in temperature have recently been found in the Ethio- pian Great Rift Valley.

90% of all coffee production is located in the developing world.

Screenshot 2018-09-29 at 11.47.33.pngAll the signs regarding arabica coffee growing in an age of global climate change are troubling. We must expect that production will probably decrease, that quality may be affected, prices will rise, and that the livelihoods of millions of people are at risk. With many farmers finding conditions more difficult with less income, there is the real risk that intense production of higher-income cane sugar, palm oil, cocoa leaf or khat replace coffee. What is needed is a reevaluation of the pricing structure of coffee linked to new patterns of behaviour that value the wider natural system within which it is grown. With the fair financial support of consumers, coffee farmers will be able to take steps to protect their livelihoods from the devastations of unpredictable rainfall, increasing temperatures and the growing abundance of pests and diseases. There is now an opportunity for more farmers to embrace small-scale, shade-grown coffees that will benefit the wider environment, keep their businesses sustainable and keep producing good quality coffees.

As a Roaster from a coffee company in London said in an interview for this article: “The consumers have the knowledge, the power and the resources to do something proactive. If the consumer is willing to pay more from an ethical company … then the farmers have the resource to invest in strategies that will help to mitigate the issue [of climate change].

References:

Kew Royal Botanical Gardens http://www.kew.org/plants-fungi/Coffea-arabica.htm Last accessed 04/03/142

International Coffee Organization http://www.ico.org/prices/m1.htm Last accessed 01/03/14

Davis AP, Gole TW, Baena S, Moat J (2012) “The Impact of Climate Change on Indigenous Arabica Coffee (Coffea arabica): Predicting Future Trends and Identifying Priorities.” PLoS ONE 7(11): e47981. doi:10.1371/journal.pone.0047981

US Department of Agriculture (2013) “Coffee: World Markets and Trade”http://apps.fas.usda.gov/psdonline/circulars/coffee.pdf Last accessed 22/02/14

Kasterina A, Scholer M, and van Hilten HJ. (2010) “Climate Change and the Coffee Industry.” International Trade Centre http://www.intracen.org/uploadedFiles/intracenorg/Content/Exporters/Sectoral_Information/Agricultural_Products/Organic_Prod ucts/Climate-Coffee-Ch-13-MS-ID-3-2-2010ff_1.pdf

Wexler A. “Arabica-Coffee Prices Climb to 16-Month Highs.” Wall Street Journal 19/02/2014http://online.wsj.com/news/articles/SB10001424052702303775504579392853470572772 Last accessed 26/02/14

Jaramillo J, Setamou M, Muchugu E, Chabi-Olaye A, Jaramillo A, et al. (2013) “Climate Change or Urbanization? Impacts on a Traditional Coffee Production System in East Africa over the Last 80 Years.” PLoS ONE 8(1): e51815. doi:10.1371/journal.pone.0051815

Kutywayo D, Chemura A, Kusena W, Chidoko P, and Mahoya C. (2013) “The Impact of Climate Change on the Potential Distribution of Agricultural Pests: The Case of the Coffee White Stem Borer (Monochamus leuconotus P.) in Zimbabwe.” PLoS ONE 8(8): e73432. doi:10.1371/journal.pone.0073432

de Souza HN, de Goede RGM, Brussaard L, Cardoso IM, Duarte EMG, Fernandes RBA, Gomes LC, and Pulleman MM. (2012) “Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome.” Agriculture, Ecosystems and Environment. 146, 179-196

Jaramillo J, Muchugu E, Vega FE, Davis A, Borgemeister C, et al. (2011) “Some Like It Hot: The Influence and Implications of Climate Change on Coffee Berry Borer (Hypothenemus hampei) and Coffee Production in East Africa.” PLoS ONE 6(9): e24528. doi:10.1371/journal.pone.0024528

Nicholson M. “Central American coffee leaf rust sends roasters to new markets for beans.” Reuters News Agency 10/07/2013http://www.reuters.com/article/2013/07/10/coffee-fungus-supply-idUSL2N0EV20S20130710 Last accessed 01/03/14

Jackson D, Skillman J, and Vandermeer J. (2012) “Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem.” Biological Control. 61:1, 89-97

Erickson J. “Modern growing methods may be culprit of ‘coffee rust’ fungal outbreak.” Michigan News: University of Michigan. 12/02/2013http://www.ns.umich.edu/new/releases/21192-modern-growing-methods-may-be-culprit-of-coffee-rust-fungal-outbreak

Karp DS, Mendenhall CD, Sandi RF, Chaumont N, Ehrlich PR, Hadly EA, Daily GC. (2013) “Forest bolsters bird abundance, pest control and coffee yield.” Ecology Letters. 16:11, 1339-1347

Gonthier DJ, Ennis KK, Philpott SM, Vandermeer J, and Perfecto, I. (2013) “Ants defend coffee from berry borer colonization.” BioControl: Journal of the International Organization for Biological Control. 58:6, 815-820

“All About Ants”: A talk to the Selborne Society

Inspired by Gilbert White (naturalist, ornithologist and author of The Natural History and Antiquities of Selborne) the Selborne Society was formed in 1885 as Britain’s first national conservation organisation. Members of the Society went on to establish pre-eminiment organisations such as the National Trust and Royal Society for the Protection of Birds. Today, the Society manages Perivale Wood, an 11.6 hectare Local Nature Reserve in Ealing south-west London, where they organise an open day, and a wide range of indoor meetings and field excursions.

Perivale Wood Gates

Perivale Wood Local Nature Reserve. © John Kane.

dsc_0001-1

Bluebell wood at Perivale Wood. © Juliet Langton.

I was invited to talk to the Society and members of the public about the biology and ecology of ants. This blog post is a very abbreviated form of that talk with a tiny selection of the slides used to give a bit of an overview.  To be honest, I was always a bit uncomfortable with the title of the talk. I knew it would be impossible to cover everything to do with ants, so I focused on some of the areas of ant biology that most interest me.

But what’s so special about ants anyway? Well, ants are everywhere. With over 16,000 extant species found in every terrestrial habitat (apart from the polar regions) they constitute a large proportion of all living biomass. Enormously successful as scavengers, herbivores, granivores, predators and mutualists, ants perform important ecological functions as ecosystem engineers and keystone species. Some species are also highly successful at invading new territories where they can become crop pests or outcompete native species for resources. Their eusocial lifestyles also make them ideal model systems for the study of social evolution.

Part of my fascination with ants comes from the tremendous morphological diversity within and between species. Not only can there be differences between castes within species, but species can range in size from the minuscule Carebara atomus (~1 mm) to the comparatively enormous Dinoponera gigantea (~4 cm). I also have a bit of a soft spot for the myrmecophiles (other invertebrates that live in association with ants) and especially the myrmecomorphs (invertebrates that mimic the appearance and/or behaviours of ants). To share some of the beautifully complex variety of forms in ants and the ant-wannabes I asked the audience to play a game that I call “Ant Bingo!”.

Screen Shot 2018-02-22 at 15.27.30

Which of these creatures are ants? (Answers at the end of the blog post).

Everyone got into the spirit of it and after discussing some of the characteristic features of ants managed to identify all six ants displayed amongst the other fantastic creatures.

Belonging to the order Hymenoptera, the family Formicidae (what we commonly call ants) emerged in the late Cretaceous (~140 MYA) when they diverged from the Apoidea – spheciform wasps and bees. There are now more than 16,000 species of ants in over 470 genera that we know of – it is thought that there may actually be at least as many species still to be discovered. According to some estimates, there are more than  10 quadrillion individual ants alive at any time.

Screen Shot 2018-02-22 at 17.16.21

This variety in form is echoed in the highly complex and variable social structures and life histories that have evolved in different ant species. The numerous ways in which they gather food and create shelters to protect themselves from the elements and potential predators are both fascinating and ingenious. In order to feed the colony, there are ants that harvest honeydew from aphids, some that cultivate elaborate fungus gardens, and others that send out raiding swarms that capture anything too slow to get out of their way. For nest-building, there are ants that use larval silk to weave leaves together in the treetops, those that excavate elaborate underground tunnels, and those that have co-evolved with plants to live within specialized swellings and chambers called domatia which are produced by the plants for the exclusive use of their ant protectors. These examples only briefly touch on a few of the magnificent examples of diverse life strategies found within the ants.

Screen Shot 2018-02-22 at 16.47.50

A still from an animation explaining different colony-founding strategies used by ants.

There are many different social structures evident between (and sometimes even within) ant species. There are some with single queen colonies and some with multiple queens – in some cases hundreds of reproductive queens can live in the same nest. Queen number can also vary within a species so that there may be colonies with one or many queen(s). The colonies of some ant species can even persist without any queens; in these instances, worker ants can (rather peculiarly) become fully reproductive if the queen dies. These egg-laying workers are called gamergates. At the other extreme, there are the social parasites, where some species don’t produce a worker caste at all – their eggs will only produce the next generations of queens and males. These parasitic queens are known as inquilines, they take over the nests of closely related species who provide a ready workforce so there is no need to expend energy on creating more workers. And then there are what some people call the “slave-making” ants – these ants will raid other nests and carry the brood away to their own nest. The “slave” ants will then work in their new colony, defend it from attack and can even participate in future raids. This process of kidnapping and imprinting is more accurately referred to as dulosis.

I should also emphasise the fact that these social structures may vary over time depending on what life-stage the colony is at. For example, the number of reproductive queens within a colony may vary depending on whether the colony is experiencing a rapid growth phase such as the establishment of a new colony. At this early period, it can be highly beneficial to have many queens all laying eggs at the same time to quickly produce workers to protect the nest, forage for food and care for the brood. But after a time (once the colony is a bit more established) the need for multiple queens is diminished and what was a co-operative breeding chamber becomes an arena for a battle to the death until only one queen remains.

Ants are, in my view, remarkable animals. They have adapted to fill every conceivable terrestrial niche through evolving incredible morphological adaptations, variable social structures, and a dizzying array of life histories. There are also fantastic opportunities for research with many more species to be discovered and behaviours to describe.

 

This video clip from the BBC2 documentary Natural World: Attenborough and the Empire of the Ants shows wood ants (Formica sp.) defending their nest:


Further online resources about ants:


Answers to Ant Bingo! (those in bold are ants)

  1. Cyphotes sp. Wingless wasp
  2. Salticidae (jumping spider) mimicking Tetraponera mocquerysi
  3. Tricondyla annulicornis tiger beetle
  4. Azteca instabilis alate queen
  5. Dorylus sp. male
  6. Soldier termite Syntermes sp.
  7. Velvet ant Mutillidae sp.
  8. Discothyrea mixta 
  9. ant-mimicking staphylinid beetle Ecitomorpha cf. breviceps
  10. Ecitocryptus sp. rove beetle
  11. Eciton mexicanum with Nymphister kronaueri beetle attached
  12. Leptomyrmex unicolor
  13. Cephalotes varians

From Thorn to Orchid

Last Summer I got to revisit an old haunt in South London where I used to volunteer with the London Wildlife Trust. I was very excited about returning to Hutchinson’s Bank Nature Reserve (it is in the suburb of New Addington and easily reached by tram from Croydon). I left the restoration project when I moved ‘North of the River’ some years ago and had not seen the final transformation from scrubland back to chalk grassland. I was not disappointed – this site is a bit of a treat even when the weather isn’t at its finest.

The reserve was taken on by LWT (on behalf of Croydon council) because of the potential to enhance the scrubbed over chalk grassland through habitat restoration & management work and by building on the planting and maintenance already undertaken by a group of dedicated locals who had successfully introduced small patches of Kidney vetch (Anthyllis vulneraria) and Greater yellow rattle (Rhinathus angustifolius). Because of these locals who were actively involved there was also already a very impressive list of butterfly and orchid records associated with the site.

Lowland calcareous grasslands form over shallow limestone-rich or chalky soils which have a typically high pH, low nutrient levels and tend to be free draining. Because they favour these particular conditions, chalk grassland plant species are called calcicoles (lime-loving plants). Much of Hutchinson’s Bank Nature Reserve is, as the name implies, on the slope of an embankment which aids with the drainage of rainfall, and the fact that the slope is south-facing ensures fairly warm conditions throughout the Summer months.

hutchinsons-bank-montage

Clockwise from top left: Tibellus oblongus; mating Robberflies, Machimus atricapillus with prey; Longhorn beetle, Rutpela maculata; Marbled white, Melanargia galathea on scabious; Small Blue, Cupido minimus on Anthyllis vulneraria; Pyramidal orchid, Anacamptis pyramidalis; Volucella pellucens; Philodromus sp.; Chrysotoxum bicinctum; Oncocera semirubella; Roesel’s Bush Cricket, Metrioptera roeselii.

It is estimated that there is between 25,000 ha and 32,000 ha of chalk grassland in the UK1 where it is considered a nationally rare habitat. Calcareous grasslands have been described as being equivalent to coral reefs in terms of their species richness, and though this can be seen in small areas, the comparison doesn’t really hold once you increase the scale of the compared areas. As you increase the study area on a coral reef, you will continue to find new species at a higher rate than in chalk grasslands where you will fairly quickly find all the resident species, relatively speaking.

This notwithstanding, calcareous grasslands are highly species rich with a single square metre supporting between 50 and 60 species of vascular plant (including 37 Red Data Book species). As a result of this habitat heterogeneity, we find variation in vegetation structure and large numbers of different food plants which cater for one of the most diverse insect communities in Britain.2

What makes these habitats especially rare is the fact that they are remnants of Mesolithic  agriculture; established about 9,500 to 5,000 years ago when forest cover was cleared for growing crops and rearing domestic animals which continued well into the Neolithic era. The highly porous soils meant that nutrients leached away and that these largely-unfertilized fields eventually lost productivity and were abandoned for new sites. But while they were productive, they were kept clear of encroachment by scrub and the succession to closed-canopy forest was inhibited.2, 3, 4 These cleared areas would then support grass swards and herbs associated with both steppe and Meditteranean vegetation types whose seeds had previously lain dormant in the soil seed bank. This anthropogenic land management system involves quite a specific regimen, and though supported by some historical pollen records and fossilised beetle fauna, it remains unresolved.4, 5 

In 2000, Frans Vera proposed a new hypothesis to explain open patches of land (much like savannahs) based on the same evidence but concluded that these areas were maintained by large herbivores such as auroch, wild horses and deer. The Vera Hypothesis, as it has come to be known, remains controversial and has become the basis for a large-scale rewilding experiment at Oostvaardersplassen in the Netherlands. It is likely, in my view, that a mosaic of open areas was first created for agricultural use and then maintained by browsing and grazing of ungulates.

With this in mind, it is therefore interesting to view a map of Hutchinson’s Bank Nature Reserve from 2012 which shows the management plan for different areas including removing topsoil (the most recent land use was modern agriculture, rotational grazing and cutting back scrub. These accepted chalk grassland management practicesare very similar to those used by Mesolithic farmers ~9,000 years ago.

Screen Shot 2017-05-20 at 11.47.06

London Wildlife Trust map and management plan for Hutchinson’s Bank Nature Reserve from 2012.

The largest threat to chalk grassland ecosystems is therefore a lack of correct management which leads to encroachment of scrub and eventually reforestation. Add to this past (and perhaps recurring) socio-economic pressures to develop high-yield crops and provision of housing, and the threat becomes compounded. With only 29% of lowland calcareous grasslands assessed as SSSI being described as favourable by the Joint Nature Conservation Committee, there is real cause for concern. However, an additional 40% of sites are described as “unfavourable recovering”, but without any indication of what that means for each site in terms of actual improvement over time I am unsure of how much solace one can draw from that number.

f622af4f124372600cb7c9061e9163ff

Female larva of the nationally scarce Drilus flavescens that I found at Saltbox Hill SSSI in 2011.

It was on one of my volunteering days in August 2011 that we went to another chalk grassland managed by LWT nearby. We were here to survey the vegetation, plot the exact perimeter and identify areas for habitat management.

Saltbox Hill SSSI is located near Biggin Hill airport and is on a very steep hillside with ancient woodland on the ridge of the hill. With an impressive species list and located near the home of Charles Darwin, this area undoubtedly has natural history kudos, and it was here that I found one of the strangest looking insects that had me puzzled for quite some time.

Screen Shot 2017-05-21 at 07.18.53

NBN atlas map showing the distribution of Drilus flavescens in the UK.

 

Some small square sheets of corrugated iron had been set out to act as refugia for the resident slow worms and snakes. Sitting on the edge of one of these sheets was a segmented, rather hairy, caterpillar-like insect. I was completely stumped. I just about managed to get a photo with my phone and as soon as I got home I turned to the internet for help. iSpot is a very useful resource for these baffling discoveries – experts and amateurs alike will help with an ID of any species from a photo and some habitat information. Within a matter of hours I had an ID of Drilus flavescens. Turns out my insect was the female larva of a highly sexually dimorphic beetle found in chalk grasslands. It has a very limited range and is classified as scarce in the UK. Fascinatingly, the males look more like traditional beetles as adults, while the females remain looking much like their larval form. You can find more information at Mark Telfer’s excellent website here.

A visit to a chalk grassland in Summer is a complete sensory immersion. I implore you to go and walk through the grasses skirting the ant mounds; smell the heady herby scents of wild thyme and oregano as you brush past; be surrounded by the buzzing of bees and flies and the soft susuration of grasshoppers; and be dazzled by the sight of brightly-coloured flowers and dancing butterflies. These are spaces that celebrate the wonder of life. I am heartily looking forward to another visit this year.

 

References:

  1. Price, E.A.C. (2003) Lowland Grassland and Heathland Habitats (Habitat Guides Series), Routledge, London and New York.
  2. Mortimer, S.R., Hollier, J.A. and Brown, V.K. (1998) Interactions between plant and insect diversity in the restoration of lowland calcareous grasslands in southern Britain. Applied Vegetation Science 1: 101-114.
  3. Willems, J.H. (1983) Species composition and above ground phytomass in chalk grassland with different managementVegetatio, 52, 171-180.
  4. Robinson, M. (2014) The ecodynamics of clearance in the British Neolithic. Environmental Archaeology. 19 (3), 291-297
  5. Bush, M.B. and Flenley, J.R. (1987) The age of the British chalk grassland. Nature329 (1), 434-436.
  6. Butaye, J., Adriaens, D., and Honnay, O. (2005) Conservation and restoration of calcareous grasslands: a concise review of the effects of fragmentation and management on plant species. Biotechnologie, Agronomie, Société et Environment. 9 (2).
  7. Crawshay, L. (1903). On the life history of Drilus flavescens, Rossi. Transactions of the Entomological Society of London, 51, 39 – 51.

 

Continue reading

The Walking (Un)Dead: Zombie ants and the strange effects of parasitic fungi on ant behaviour​.

In the understorey of a tropical forest, a carpenter ant, of the species Camponotus leonardi, has descended from the canopy away from her regular foraging trails and staggers drunkenly along a branch. Her movements are jerky and conspicuous. She twitchily moves forwards and suddenly starts convulsing with such ferocity that she falls from the branch onto the ground before again taking up an erratic fitful path that zigzags and circles back on itself. Around noon, after several hours of climbing and aimless lurching (now no more than about twenty-five centimetres above the ground) the ant finds herself on the underside of a sapling leaf where, without warning, she forcefully sinks her mandibles into one of the leaf’s veins, gripping it firmly between her tightly locked jaws. Within six hours the ant is dead.  After two days, white hairs bristle from between her joints and a few days later these have become a brown mat covering the whole insect and a pinkish-white stalk has started to erupt from the base of the ant’s head. The stalk continues to grow and within two weeks it has reached twice the length of the ant’s body reaching towards the ground below.

This is a description of a “zombie-ant”, part of the life-cycle of a parasitic fungus, Ophiocordyceps unilateralis. This bizarre behaviour was first recorded by Alfred Russell Wallace in Sulawesi in 1859, but was not researched in much detail until quite recently. It has since been discovered that the fungus disrupts the normal behaviour of the ant through chemical interference in the brain, causing the infected ant to behave in ways that will improve the fungus’ opportunities to spread its spores and so reproduce. The fungus grows throughout the body cavity of the ant, using internal organs as food while the ant’s strong chitonous exoskeleton serves as a kind of capsule, protecting the fungus from drying out, being eaten, or further infection.

The earliest known record of a fungus visibly parasitizing an insect dates from about 105 million years ago, it is a male scale insect, preserved in amber, with two fungal stalks projecting from its head. But this fossil cannot tell us if the infected insect’s regular behaviour was changed or disrupted in any way.  Evidence of “Zombie-ant” behaviour dates from around 48 million years ago from fossilised leaves that show the distinct markings on either side of leaf veins left by the lock-jawed mandibles of Eocene epoch ants. This association is evidently ancient and seemingly very common, with about 1,000 species of fungal parasites of insects known to exist today. These fungal pathogens have evolved to become either strictly species-specific or more generalist in their target insects, with some able to infect hundreds of different species. The variety of fungal pathogens and potential hosts has created some peculiar behaviours in insects which have most likely co-evolved with the fungi.

It is sometimes difficult to know which of these insect behaviours are entirely involuntary and driven by the fungus to improve its own reproductive success; and which the insects have evolved as a form of defence against infection. One of these unresolved odd behaviours is when the ant host climbs to an elevated position in what is known as “summit disease”. This increases the area over which spores can spread through wind dispersal, and removes the ant from close proximity with its colony or relatives. It is unclear if this behaviour is a zombie state caused by the fungus or if it is an altruistic act of self-sacrifice by the ant. By moving to an area away from its relatives it might be saving the rest of the colony from the immediate spread of infection by what is sometimes called “adaptive suicide”.

cordyceps4-xlcordyceps2-xl

In this age-old struggle for survival the ants have developed adaptations to protect themselves and their nests from fungal infections. Grooming themselves and socially cleaning each other, allogrooming, they remove potentially harmful spores before these can penetrate the cuticle and take hold. Some ants spray poison in their nests to act as fungicides and if that fails to stop an infestation, they partition their nests by sealing off contaminated chambers. In some cases infected individuals are carried out of the nest by healthy workers; and as a last resort the entire colony relocates, abandoning the nest.

Zombie-like behaviour in insects is also caused by other types of parasites including bacteria and even other invertebrates. Such parasites are extreme versions of the multitudes of microscopic organisms that exist in and on all living things. This raises fascinating questions about the nature of any organism’s true independence in what are undoubtedly highly complex interrelated living systems. Zombie-ants provide us with a glimpse into this intricately tangled-web of molecular influences and behavioural adaptations – often leading us to wonder: who, ultimately, controls whom?

 

References:

  1. Andersen, S.B., Gerritsma, S., Yusah, K.M., Mayntz, D., Hywel-Jones, N.L., Billen, J., Boomsma, J.J. and Hughes, D.P. (2009) The Life of a Dead Ant: The Expression of an Adaptive Extended Phenotype. The American Naturalist, 174(3): 424-433.
  1. Hughes, D.P, Andersen, S.B., Hywel-Jones N.L., Himaman W., Billen, J. and Boomsma J.J. (2011) Behavioral Mechanisms and Morphological Symptoms of Zombie Ants Dying from Fungal Infection. BioMed Central: Ecology, 11(13).
  1. Pontoppidan M.-B., Himaman W., Hywel-Jones N.L., Boomsma J.J. and Hughes D.P. (2009) Graveyards on the Move: The Spatio-Temporal Distribution of Dead Ophiocordyceps-Infected Ants. Public Library of Science: ONE, 4(3): e4835.
  1. Shang, Y., Feng, P. and Wang, C. (2015) Fungi That Infect Insects: Altering Host Behaviour and Beyond. Public Library of Sciences: Pathogens, 11(8): e1005037
  1. Hughes, D.P., Wappler, T. and Labandeira C.C. (2010) Ancient death-grip leaf scars reveal ant–fungal parasitism. Biology Letters, 7: 67-70.
  1. Roy, H.E., Steinkraus, D.C., Eilenberg, J., Hajek, A.E. and Pell, J.K. (2006) Bizarre Interactions and Endgames: Entomopathogenic Fungi and Their Arthropod Hosts. Annual Review of Entomology, 51: 331-57
  1. Bekker, C. de, Quevillon, L.E., Smith, P.B., Fleming, K.R., Ghosh, D., Patterson, A.D. and Hughes, D.P. (2014) Species-Specific Ant Brain Manipulation by a Specialized Fungal Parasite. BioMed Central: Evolutionary Biology, 14(166).

All images ©Alex Wild http://www.alexanderwild.com

Marshland meander: A visit to RSPB Rainham Marshes

I have been a card-carrying member of the Royal Society for the Protection of Birds for about 15 years. In that time I have seen some great successes and a variety of challenges faced by the society. The RSPB is the largest nature conservation charity in the UK (with over 1 million members) and also the oldest. Originally set up in 1889 by a group of women who were concerned about the hunting of birds for their feathers (which were a la vogue – especially the decorative use of grebe skins and egret plumes in the hats of Victorian ladies).

The ‘Birds’ component of the RSPB’s moniker is still very relevant today as they continue to work on species protection projects that focus on individual UK bird species which are in decline or under threat such as stone curlews, black-tailed godwits, corncrakes and lapwings.  In fact this strategy proved highly successful in the past as with the red kite re-introduction project which saw numbers of a globally threatened species rise to 1,800 breeding pairs in Britain between 1980 and 2011. This methodology has, however, led to some criticism of the single-species approach for tending to select high-profile charismatic species, and employing management practices that may disadvantage non-target species. It also raises the question of why a particular species should receive conservation preference over any other. To this end the IUCN Red List of Threatened Species was established to help assess the conservation status of species by identifying threatened species and promoting conservation action. We aren’t even aware of the totality of extant species, nor do we have a full understanding of which of those are, or me be, under threat. Insects are a good example; with only 6,051 insect species listed in the IUCN Red List database (of somewhere between 1 million known species and up to 8.5 million expected to be found) there is still an enormous amount of work to be done.

The RSPB’s conservation work, does however involve more than the protection of individual species. Another component of this work is habitat management which is undertaken at more than 200 reserves maintained by the society. This presents the RSPB with opportunities to work towards conserving other (unfeathered) species either on their own or in collaboration with partner organisations. At a time when environmental protections in the UK are likely to be significantly eroded and underfunded, there is some small comfort to be drawn from the fact that there are many conservation organisations like the RSPB that will continue to work to maintain, manage and support wildlife and wild places. But conservationists will need to be focused and their priorities will need to be very clear.

In 2013 the RSPB added the tagline “Giving nature a home” to its logo exemplifying how it has become a conservation charity that now also focuses its attention on wild spaces and the plight of all the other featherless organisms. Though this could be seen as a large charity cannibalising and intervening in the work of smaller (and more focused) organisations in the sector, the sheer scale and associated land-area that the RSPB maintains does allow for a more holistic approach with regards ecosystem and habitat conservation – effectively creating opportunities for protecting and conserving a wide range of species through landscape-level management. What is significant here, though, is that we need to be able to maintain an interesting matrix of connected habitats of varying sizes in order to be able to support as much biodiversity as possible.

DSC_1057DSC_0012DSC_0007

RSPB Rainham Marshes is one of the reserves in the society’s portfolio which was established in 2000 in an area of Essex along the river Thames that was formerly Ministry of Defence land and closed to the public for over 100 years. Part of the Inner Thames Marshes SSSI that stretches over an area of 479.3 hectares this area is a haven for wetland birds. On my recent visit I got to see some of these including swans, lapwing, oystercatcher, marsh harrier, shoveler, shelduck, mallard, canada geese, little grebe, grey heron, redshank, sedge warbler, reed bunting, as well as swifts, linnets, goldfinches, kestrel, sand martins and a displaying skylark. Hauled out on a sandbar on the far bank of the river was a group of 7 harbour seals. As fantastic as these were, why I really came to Rainham was for the invertebrates. The low-lying grazing marsh with wet grassland, ditches, scrub and reed beds on an urban and light-industrial fringe make for a complex habitat mix with a number of interesting ecotones.

It was for the most part a beautifully sunny afternoon, but quite windy at times making some of the photography quite challenging (as you’ll notice from a few rather blurry shots in the following slideshow). I’ve also made note of a few additional butterflies that I was just too slow to photograph – small heath, large white, peacock, red admiral and large skipper – as well as a broad-bodied chaser that zoomed past my head.

All of the invertebrates featured were found through observation and searching by hand because I wanted to photograph them as undisturbed and in as natural a setting as possible. This has meant that species that would have been found by using a pooter, sweep net or beating tray are lacking from my finds. Nonetheless, I was delighted with the dazzling green of the swollen-thighed beetle (Oedemera nobilis) perfectly placed at the heart of a dog rose its femurs bulging like metallic pantaloons, found quite soon after leaving the visitor centre. A leisurely walk along the bank of the river skirting the reserve presented many empid flies, jumping spiders, bumble bees and my first record of a knobbed shieldbug (Podops inuncta) scuttling for cover across a concrete embankment where I chose to stop for my ploughman’s lunch.

This slideshow requires JavaScript.

Please feel free to send me corrections if I have misidentified anything or if you can get closer to species with those I’ve only managed to identify to genus.

I then cut away from the river, crossing a channel of pebbles and loose rock aggregate where a  mix of stonecrop, bramble and ragwort pushed up through the gaps. Here were more bees and another personal first of  a couple of black-striped longhorn beetles (Stenurella melanura) on bramble flowers. This area also had a scattering of detritus washed up from the river: bits of plastic, wood, a child’s sky-blue bicycle lying on the mudflat.  Beneath a plank I found a scuttling centipede and a cluster of earwigs all with abdomens raised and forceps flailing in defence. Then on along a grassy path and down an embankment, stopping to investigate the umbels of giant hogweed for ants, flies, wasps and other insects taking advantage of this high-energy nectar source. A bit of a detour through the grass saw a flurry of sightings: common blue (Polyommatus icarus), small tortoiseshell (Aglais urticae) and a summer chafer (Amphimallon solstitiale). Unfortunately a bit early in the year for the now fairly well-established and easily recognisable wasp spiders (Argiope bruennichi), but I think another visit in late Summer should do the trick.

I dropped in at the visitor centre for a fruit juice and then headed off into the reed beds along the boardwalks where I saw a female scorpion fly (Panorpa sp.) with her particularly oddly-shaped extended mouthparts and chequered wing patterns. Here too, on thistle, were 6 hairy shieldbugs (Dolycoris baccarum) sporting Art Deco-like purple and green thoraxes, and black-and-white banding along their antennae and laterotergites. Disappointingly, I only managed to get one photograph of a dragonfly, a blue-tailed damselfly (Ischnura elegans) before closing time. And as I made my way to the exit marvelling at all the wonderful creatures I had been fortunate enough to see I was surprised by a female mallard leading her ducklings along the boardwalk who, on sight of me, dropped over the edge and disappeared into the reeds.

DSC_1028

Faking it as a survival strategy

224139Cheats and Deceits: How animals and plants exploit and mislead. By Martin Stevens. Published by Oxford University Press (2016).

Last year, on a trip to Devon, I saw my first ever oil beetle (Meloe proscarabaeus). She was beautiful. Her black carapace glistened violet and blue in the sunlight. She was gravid and crawling along the footpath in search of a place to dig a nest burrow to lay her eggs. But what I did not yet appreciate was the extraordinary life cycle of these captivating beetles. The young of a related species, Meloe franciscanus, emerge from the nest and swarm up a nearby plant where they congregate in a mass mimicking the shape of a female solitary bee (Habropoda pallida) and release a chemical compound similar to the bee’s sexual pheromones.  This proves all too irresistible to male bees who are drawn to this aggregation and attempt to mate with it, presenting the larvae with the perfect opportunity to grab hold of the bee and clamber onto his back.  He then carries these passengers with him until he finds a female to mate with at which point the larvae instantly decamp onto the female. From here they then transfer to her nest where they devour the stored nectar, pollen and the bee’s eggs. The evolution of this complex mimicry is absolutely fascinating and forms part of Martin Stevens‘ interrogation of deception in Cheats and Deceits: How animals and plants exploit and mislead.

This book is an immensely informative and enjoyable exploration of the multiple roles deception plays in nature. Stevens sets out a detailed examination of a wide variety of instances of natural deception from well documented examples such as the evolution  of camouflage through industrial melanism in the Peppered Moth (Biston betularia) to current research into the resemblance to falling leaves in the movement and colouration of Draco cornutus, a gliding lizard from Borneo. It is to Stevens’ credit that this book makes for entertaining and effortless reading while clearly citing all the relevant research within context and pointing to areas where knowledge is still lacking.

The language of deception is important. Stevens takes the time to explain some of the more commonly used terms associated with deception such as camouflage (blending in to the environment), mimicry (assuming the appearance – be that visual, chemical, behavioural or acoustic – of another organism) and masquerade (taking the form of an inedible object – as with stick insects). Mimicry and masquerade therefore lead to misidentification while camouflage reduces detectability or impairs recognition. Mimicry also comes in various guises some of which can be described as: aggressive, when predators mimic harmless species to enable prey capture; Batesian, when a palatable species mimics the characters of an unpalatable species, as seen in the chicks of an Amazonian bird Laniocera hypopyrra mimicking toxic caterpillars; and imperfect mimicry, as with hoverflies roughly resembling certain species of wasps and bees (for which there are a number of competing theories).

This, of course, only scratches the surface of a vast area of research that Stevens specialises in as head of the Sensory Ecology and Evolution group at the University of Exeter where he continues to research these themes. His enthusiasm for his topic is highly infectious; you find yourself transported from an explanation of background matching in cuttlefish, to an historical aside concerning the development of military camouflage, and on again to a description of his own field experiments in testing the efficacy of disruptive colouration.

“We must trust to nothing but facts: these are presented to us by nature and cannot deceive. We ought, in every instance, to submit our reasoning to the test of experiment, and never to search for truth but by the natural road of experiment and observation.” ~ 18th-century chemist Antoine Lavoisier

The book does rely heavily on zoological examples, and although Stevens doesn’t entirely neglect plants his observations do tend to mainly focus on carnivorous plants and orchids. But to be fair, Stevens does make the point that more research into botanical forms of deception is required and suggests that this should be undertaken with a view to specifically exploring the roles of chemical signalling and sensory exploitation. One of the examples cited in the book is the orchid Epipactis veratrifolia which attracts female hoverflies to lay eggs on the plant by releasing chemicals that mimic the alarm pheromones of aphids (the food source of hoverfly larvae). This may rather be a means by which the orchid exploits an inbuilt perceptual preference for chemicals associated with hoverfly larval food sources – either way the plant is deceiving the insect in order to  ensure protection from aphid infestation.

A form of deception more commonly associated with orchids is that of exploiting male insects to pollinate plants by mimicking the female form through the shape and colouration of the flower. However, Stevens points out that this mimicry is sometimes (as in Cryptostylis orchids) not particularly convincing to human eyes, but is overwhelmingly so to the male wasp which tries to mate with the flower and thus collects the pollinium which will be deposited at the next Cryptostylis flower that he visits. With this example (as with the oil beetle, among others) the author cautions researchers of deception in nature to be aware of anthropocentric biases that may arise through our observations and study, and to (wherever possible) approach our subjects in the manner and with the senses of the deceived species.

I am utterly delighted and inspired by this book and am certain that I will return to it again and again as a point of reference. I have no hesitations in highly recommending it to researchers, field naturalists and those with a passing interest in natural history.

Postscript

At the time of writing, Phil Torres and Aaron Pomerantz have discovered and documented kleptoparasitism of ants in a species of butterfly (Adelotypa annulifera) in the Peruvian Amazon which they believe might mimic ants through their wing patterns. This seems to me an ideal opportunity for further research looking at visual and chemical mimicry given both the wing patterns and larval associations.

Getting down and dirty with the Earthworm Society of Britain

I attended the Earthworm Society of Britain‘s annual general meeting at Cannock Chase Forest where I got to meet fantastic amateur enthusiasts, very knowledgable naturalists with a general interest in worms, and some hardcore earthworm specialists. It was an immensely enjoyable couple of days of field recording in various habitats found here including broadleaved woodland, grassland and heath as well as microhabitats such as dead wood.

“It may be doubted whether there are many other animals which have played so important a part in the history of the world, as have these lowly organised creatures”. Charles Darwin

Since Darwin’s observations and experiments with earthworms was first published in 1881 under the title The Formation of Vegetable Mould, Through the Action of Worms, With Observations on Their Habits a new area of little-known research relating to these fascinating creatures was born. Despite this, we still find a lamentable lack of data regarding the distribution of earthworms throughout the UK and are continuing to research the ecosystem-wide implications of their below-ground activity.

In attending the society’s field day and AGM I was curious to find whether earthworms would pique my interest as a naturalist and scientist or whether I had developed a nostalgic yearning for simpler times. I have vivid memories of when, as a child, I would gingerly lift the edge of the damp burlap sack to scoop out trowel-fulls of fusty earth from half an oil drum in which my grandfather bred earthworms to bait his fishing hooks. I think the answer is that they are probably both true. This area is rich for contributions to research and recording while also being a great opportunity to get my hands stuck in some dirt and forget about my everyday worries. And when Amy Stewart so eloquently points out in response to the relevance of Darwin’s research and the significance of earthworms, that they’re “…only carrying out the natural order of things, folding the ruins of a farm, a city, or a society into the lower strata of the earth. When our civilizations end, and when we as individuals die, we don’t ascend, not physically. We descend. And the earth rises up to meet us”, how could I resist?

Day 1

Looking for earthworms is a messy affair and you have got to be prepared to get dirty. Armed with spades, sorting trays and all-weather gear we set out to see what the various sites had to offer.

ESBWe started with the damp, waterlogged woodland near  the classroom we had booked for the day and were immediately set upon by midges and mosquitoes. Ankle-deep in mud, and stippled with insect bites we dug 5 soil pits here with a reasonable haul of worms before making a break for an area of bracken further up the slope and farther away from the biting flies. We didn’t find any earthworms in the bracken pits, but were entertained by a greater spotted woodpecker feeding her voracious and loudly calling young in a nearby nesting hole before we again set off to a new site. A stop on the way to explore the banks of a stream and some adjacent dead wood in varying states of decay provided a few more worms for our count as well as other obligatory detritivores – millipedes, centipedes and woodlice.

It was in the pits dug from the grass verge alongside a footpath with flowering speedwell and buttercups  where the highest number of earthworms were found, along with leatherjackets and other unidentified fly and beetle larvae. Our small party of slightly bedraggled and filthy earthworm explorers then headed back to the Forestry Commission classroom. Looking to all the world like a group of unsuccessful treasure hunters or end-of-shift gravediggers we traipsed back to the promise of piping hot tea and freshly made sandwiches while a retinue of dog walkers, mountain bikers and Segway riders passed us by.  After lunch we could be found sitting in drifts of leaf litter in an old disused drainage ditch beneath a small stand of beech trees opposite the car park where we turned up a few more worms.

Then on to the AGM. First we were treated to a fascinating presentation on the worldwide diversity of earthworms (look out for the fried egg worm when in the Philippines) and an update on the ongoing search for the world’s longest earthworm (currently hotly contested between researchers in the Amazon and another in South Africa) by the society’s chair. Thereafter, the recording officer presented an assessment of the state of earthworm recording in the UK compared to other ‘more charismatic’ species such as butterflies – I think it’s fair to say that we have some way to go yet, but that significant progress has been made since the establishment of the society.  New members were elected to the committee (I am delighted to have been accepted as the new treasurer) and all matters were concluded and followed by dinner and drinks in a local pub.

Day 2

The next morning started with a sighting of a pair of Little Ringed Plovers on a derelict brownfield site near the hotel where we were staying before we bundled into cars and headed back to Cannock Chase with the intention of doing some mustard sampling,  digging soil pits in the heath and surveying areas that were being grazed by cattle. We set off on foot from the car park along the road until we reached a small wooded area with birch trees and much dead wood where we started collecting worms accompanied by the call of a cuckoo.

And then on to the next site where the shallow, stony and root-filled heathland pits that we eventually managed to dig were predictably uninhabited by earthworms; but we did manage to extract some from beneath some carpet tiles that had been scattered on a grassy area nearby using the diluted mustard concoction below (which I’ve been told is as indispensable as a spade to earthworm recorders).

13307234_1883847181842582_7173217131623799719_n

A little further down the path a rather large felled tree was rolled away to reveal more worms and a host of other creatures including a palmate newt, a toad,  an unidentified moth larva, pill millipedes, centipedes and  carabid beetles. We were also treated to a view of a tree pipit calling from the top of an oak and the slightly stumbling flight of a scorpion fly. We then made our way on to the grazed area where we wanted to do our final sampling for the day. Or we would have, but as we walked past the cinnabar moths and the many humped yellow meadow ant nests we realised that we may have misjudged the distance somewhat, so picked up the pace but didn’t get there with enough time to do any sampling. As a consolation we did spy a green tiger beetle scuttle across the chalk path as we now hastened back to the car park for a final catch up before scrubbing our hands clean and going our separate ways.

More information

You may have noticed that for a blog post on earthworms, this has been fairly light on any detailed earthworm records. This is because we don’t yet have our full set of records from those who attended the field days, and for my part as I am still a complete novice I am still working my way through the ID process. For ID resources, there is an excellent key by Emma Sherlock and an online  multi-access key developed by Richard Burkmar, both of which I highly recommend.

For a bit more information about earthworms and some of the work of the Earthworm Society watch this short youtube video produced by Eco Sapien and the FSC explaining why earthworms are important.
To get involved you can either contact the Earthworm Society directly or if you first want to try your hand at surveying earthworms you can take part in the citizen science project Earthworm Watch.